We will now focus on the incompressibility condition $\nabla \cdot \mathbf{v} = 0$ in two dimensions. That is \begin{equation} \partial_x v_x + \partial_y v_y = 0. \end{equation} Introducing $\mathbf{v}^\perp \equiv (-v_y,v_x)$ allows us to write the incompressibility condition as an irrotationality condition $\nabla \times \mathbf{v}^\perp=0$. This means that there is a scalar field $\psi$ such that $\mathbf{v}^\perp \equiv \nabla \psi$. In particular, the vorticity, which in a scalar in 2D, is now given by $\xi=\nabla \cdot \mathbf{v}^\perp$. The vorticity in terms of the new veolcity potential $\psi$ is therefore given by \begin{equation} \nabla^2 \psi = \xi. \end{equation} This can be solved analytically by using the Green's function for the 2d laplacian, i.e. \begin{equation} \text{if } \nabla^2 A(\mathbf{x}) = B(\mathbf{X}) \text{ then } A(\mathbf{x}) = \frac{1}{2\pi} \int B(\mathbf{y})\ln |\mathbf{x}-\mathbf{y}| d^2y. \end{equation} In our case, we have \begin{equation} \psi(\mathbf{r}) = \frac{1}{2\pi}\int \xi(\mathbf{r}')\ln |\mathbf{r}-\mathbf{r}'| dA. \end{equation} For a set of $N$ vortices $\{\Gamma_k\}_{k=1}^N$ at locations $\{\mathbf{r}_k(t)\}_{k=1}^N$, the vorticity is given as \begin{equation} \xi = \sum_{k=1}^N \Gamma_k \delta\left(\mathbf{r}-\mathbf{r}_k(t)\right). \end{equation} The velocity potential $\psi$ will then be given by \begin{equation} \psi = \frac{1}{2\pi}\sum_{k=1}^N \Gamma_k \ln |\mathbf{r}-\mathbf{r}_k(t)|. \end{equation} This means that the velocity field $\mathbf{v}$ is given by \begin{align} & v_x = \partial_y \psi = \frac{1}{2\pi}\sum_{k=1}^N \Gamma_k\frac{y-y_k(t)}{|\mathbf{r}-\mathbf{r}_k(t)|^2} \\ & v_y = -\partial_x \psi = -\frac{1}{2\pi}\sum_{k=1}^N \Gamma_k\frac{x-x_k(t)}{|\mathbf{r}-\mathbf{r}_k(t)|^2} \\ \end{align} To make sense of the divergences, we impose in addition that $\mathbf{v}(\mathbf{r}_k)=0$ for all $k$. Since vorticity moves with the flow ($\mathcal{D}_t \xi = 0$), the velocity field evaluated at a vortex is equal to the vortex speed. Therefore, we have \begin{align} & \frac{d\mathbf{r}_n}{dt} = -\sum_{k\neq n} \frac{\Gamma_k R}{2\pi} \frac{\mathbf{r}_n-\mathbf{r}_k}{|\mathbf{r}_n-\mathbf{r}_k|^2} \text{ for } R \equiv \left(\begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix}\right). \end{align} Curiously, the matrix $R$ acts as an imaginary unit (since $R^2=-1$), so we may immediately cast this equation into an even simpler form by considering a complex basis $\mathbf{e}_x = 1$ and $\mathbf{e}_y=i$ with $z_n \equiv x_n + i y_n$ so that \begin{equation} \frac{dz_n}{dt} = \sum_{k\neq n} \frac{i \ell_k}{(z_n-z_k)^*} \text{ for } \ell_k \equiv \frac{\Gamma_k}{2\pi}. \end{equation}